2 research outputs found

    Clinical evaluation of the Procleix SARS-CoV-2 assay, a sensitive, high-throughput test that runs on an automated system

    Get PDF
    COVID-19; Prueba de ácido nucleico; Amplificación mediada por transcripciónCOVID-19; Prova d'àcid nucleic; Amplificació mediada per la transcripcióCOVID-19; Nucleic acid test; Transcription-mediated amplificationTesting is crucial in controlling COVID-19. The Procleix® SARS-CoV-2 assay, a transcription-mediated amplification nucleic acid test that runs on an automated system, was evaluated using inactivated virus and clinical samples. The sensitivity of the assay was assessed using heat-inactivated SARS-CoV-2 and compared to 3 other tests. Clinical validation utilized 2 sets of samples: (1) Nasal, nasopharyngeal and oropharyngeal samples (n = 963) from asymptomatic individuals, and (2) nasopharyngeal samples from symptomatic patients: 100 positive and 100 negative by RT-PCR. The Procleix assay had greater sensitivity (3-fold to 100-fold) than the comparators and had high specificity (100%) in asymptomatic subjects. In symptomatic patients, the Procleix assay detected 100% of PCR-positives and found 24 positives in the initial PCR-negatives. Eighteen of these were confirmed positive and 6 were inconclusive. These studies showed that the Procleix SARS-CoV-2 assay was a sensitive and specific tool for detecting COVID-19.This work was sponsored by Grifols Diagnostic Solutions, Inc

    ACE Score Identifies HBeAg-negative Inactive Carriers at a Single-point Evaluation, Regardless of HBV Genotype

    Get PDF
    HBV DNA; Hepatitis B virus; Inactive carrierADN del VHB; Virus de la hepatitis B; Portador inactivoADN del VHB; Virus de l'hepatitis B; Portador inactiuBackground and Aims Hepatitis B virus (HBV) biomarkers have been used for a better categorization of patients, even though the lack of simple algorithms and the impact of genotypes limit their application. Our aim was to assess the usefulness of noninvasive markers for the identification of HBV inactive carriers (ICs) in a single-point evaluation and to design a predictive model for their identification. Methods This retrospective-prospective study included 343 consecutive HBeAg-negative individuals. Clinical, analytical, and virological data were collected, and a liver biopsy was performed if needed. Subjects were classified at the end of follow-up as ICs, chronic hepatitis B and gray zone.A predictive model was constructed, and validated by 1000-bootstrap samples. Results After 39 months of follow-up, 298 subjects were ICs, 36 were chronic hepatitis B CHB, and nine were gray zone. Eighty-nine (25.9%) individuals required a liver biopsy. Baseline HBV DNA hazard ratio (HR) 6.0, p<0.001), HBV core-related antigen (HBcrAg) (HR 6.5, p<0.001), and elastography (HR 4.6, p<0.001) were independently associated with the IC stage. The ACE score (HBV DNA, HBcrAg, elastography), obtained by bootstrapping, yielded an area under the receiver operating characteristics (AUROC) of 0.925 (95% CI: 0.880–0.970, p<0.001) for identification of ICs. The AUROC for genotype D was 0.95, 0.96 for A, 0.90 for E, and 0.88 for H/F. An ACE score of <1 had a positive predictive value of 99.5%, and a score ≤12 points had a diagnostic accuracy of 93.8%. Conclusions Low baseline HBV DNA, HBcrAg, and liver stiffness were independently associated with the IC phase. A score including those variables identified ICs at a single-point evaluation, and might be applied to implement less intensive follow-up strategies.This study received partial financial support from Instituto de Salud Carlos III (PI17/02233 and PI20/01692)
    corecore